
The History of Information Security

Martin Pozděna
Security in Telecommunications

Technische Universität Berlin
March 31, 2015

Email: martin.pozdena@campus.tu-berlin.de

Abstract—Objective of this paper is to briefly cover the
history of information security including the most influential
research as well as examples of successful and failed real-
world implementations. Logical structure of the paper consists
of several sections each covering single domain of information
security. Initially paper provides fundamental introduction into
the theory of information security. Subsequent sections cover the
following subfields of information security (in respective order):
Cryptography, Hardware Security, Network Security, System
Security and Application Security. Paper finally concludes with
the most recent trends in the field of information security and
possible future outlook.

I. INTRODUCTION TO THE INFORMATION SECURITY

Invention and rapid development of general purpose com-
puting starting in the second half of the 20th century brought
about a great technological, economical and social shift. The
creation and the use of information is getting an ever increasing
importance in our everyday life since then. Given the im-
portance information gained over the time it is vital for any
computer system that is used to process it to do it in the secure
and anticipated manner.

The fundamental component of information security is so
called CIA triad — confidentiality, integrity and availability.
Confidentiality requires the data to be only accessible to those
who are authorized to read them, thus preventing the unautho-
rized disclosure. One possible way of ensuring confidentiality
is to encrypt the data before storing it or before transmitting
it over an insecure channel. Consequently, only the authorized
person who posseses the correct decryption key is able to read
those data. This simple approach, however, brings about a new
problem of ensuring that decryption key is not disclosed to any
unauthorized party. [1]

The integrity component means that no unauthorized per-
son is able to modify the information. Integrity consists of
several distinguishable attributes. Data integrity ensures that
the data itself has not been modified in an unauthorized way,
while the origin integrity distinguishes whether the originator
of that data is really the party it claims to be (usually called
authentication). There are different mechanisms how to ensure
integrity. In case that breach of data integrity is absolutely
unacceptable in the target computer system, prevention mecha-
nisms need to be employed. Example of such a system is online
banking. In this case it is absolutely necessary that integrity of
each account balance information is ensured, thus preventing
any unauthorized party in changing it in unauthorized manner.
On the other hand, there are situations in which prevention
mechanisms are unfeasable to use. In case of two systems

communicating over the network it would be impractical to
employ prevention mechanisms, but it is enough to detect that
breach of data integrity occured so the system can request data
retransmission. [1]

Availability component represents the necessity of data
being available to the legitimate users. For instance well-
known denial of service attack attempts to discrupt the ser-
vice by submitting more requests for a given resource than
the system can handle. Consequently, the resource appears
unavailable even for a legitimate users, thus the availability
of the information is not provided. [1]

Matt Bishop defined three underlying computer security
concepts in his paper “What is Computer Security?” as fol-
lows: [2]

• Security Requirements

• Security Policies

• Security Mechanisms

Paper explains that each system being it in possesion of a
company, university or government has distinct requirements
for the computer security. Those are simply called security
requirements and are represented by common language. In
case of a company it might define that confidentiality of trade
secrets needs to be ensured under any circumstances or that
the information portal for its customers needs to be available
over the Internet 24 hours a day. [2]

Security policies are based on the security requirements and
states which actions and system states are allowed and which
are not. Based on the example above mounting unencrypted
personal flash drives on the system which hosts the trade
secrets would be prohibited by company’s security policy.
System which only resides in the allowed system states and
only performs allowed operations is secure. If any of the
previously mentioned condition is not met the system is
nonsecure. [2]

Finally, the security mechanisms are means how to enforce
the security policies. Mechanism can be either technical or
procedural. Following the example from previous paragraphs,
technical security mechanism would prevent users from mount-
ing flash drive that is not encrypted on the system. On the other
hand procedural mechanism might require all employees of a
company not to bring personal computing equiment including
flash drives into the workplace. Security mechanisms might
under certain circumstances fail to enforce the security policies
correctly. It can be either due to the incorrect configuration

of the security mechanism or due to the presence of some
programing error (for example buffer overflow). [2]

While the introduction of the paper covers the basic
concepts of computer security which does not change much
over the time, the following sections aim to discuss the
history and consequences of some important milestones in
the field of computer security. Sections are divided according
to the distinct subfields of IT security as: Cryptography, HW
Security, Network Security, System Security and Application
Security.

II. CRYPTOGRAPHY

A. Pre-computer era

People’s desire to change transmitted messages in the
way that only intended recipient and nobody else is able to
read it is considerably old. The oldest cryptographic systems
are generally referred to as classical cryptography and were
developed well before the invention of a computer, gener-
ally requiring only paper and pen for both encryption and
decryption. Most famous example of classical cryptosystem
is substitution cipher, whose fundamental idea is that each
letter of plaintext is substituted with predefined letter during
the encryption process. Decryption is then simply done by the
opposite process of reverse substitution of letters in received
ciphertext. Caesar cipher is one of well-known substitution
ciphers. Another example of classical cryptosystem is trans-
position cipher which does not change the letters of the
message but its positions. Simple implementation is to write
plaintext message into the matrix, transpose the matrix and
consequently read the ciphertext from this transposed matrix.
Classical cryptosystems are almost never used nowadays as
they proved to be very easy to break over the time.

Increased interest in cryptographic techniques before and
during both world wars brought about the invention of more so-
phisticated electromechanical encryption machines. The course
of a history was in many cases altered by the ability of
countries to keep their sensitive information confidential. Ar-
guably the most prominent example of the importance of
cryptosystems during the world wars is the German encryption
machine Enigma. Enigma machine was used during the Second
World War by Axis armies to encrypt their confidential radio
communication. It was successfully broken by cryptanalysts in
Bletchley Park, United Kingdom and allowed Allied forces to
read sensitive military messages of its adversary. According to
the Supreme Allied Commander Dwight D. Eisenhower this
fact was decisive to the Allied victory in the Second World
War and it shortened the war by few years. [3]

B. Modern cryptography

Rapid development of Information and Communication
Technologies following the Second World War set up the
environment for the inception of modern cryptosystems which
uses general purpose computers for encryption and decryption
process. Firstly, the invention of packet-switching networking,
where message is fragmented into the small chunks (packets)
to be transmitted over the network and then reassembled at
the destination set new requirements for ensuring confidential-
ity and integrity of the messages. Packet-switching network
allows every packet to take different path from source to its

destination, so every party on that path is able to eavesdrop the
message or alter it. Secondly, the invention of email commu-
nication and its aspiration to gradually replace regular mail as
more efficient way of communication needed to solve major
challenges. It needed to ensure the confidentiality and integrity
of messages the same way as the secrecy of correspondence is
guaranteed in the regular mail. Moreover, it needed to provide
a way to electronically sign the messages in order to assure
the authenticity and non-repudiation. [4]

First data encryption algorithm to be approved by United
States as Federal Information Processing Standard in 1977 and
widely deployed was DES (Data Encryption Standard). [5]
It was symmetric-key algorithm (using the same key for
encryption and decryption) based on Feistel network. It uses 56
bit long key, which is too short to hold against the bruteforce
attack nowadays. It was first superseded by TripleDES in
1999 and withdrawn at all in 2005. [6] The symmetric-
key algorithm approved as Federal Information Processing
Standard and widely deployed nowadays is Rijndael also called
AES (Advanced Encryption Standard). [7] AES algorithm is
widely used nowadays and has not been publicly broken yet.

Suppose that we have reliable symmetric-key cryptographic
algorithm that can ensure the confidentiality of the data pro-
viding the key is kept secret. If we want to send an encrypted
message (email) to some person we first need to exchange
the encryption key using some secure channel. Therefore,
symmetric-key algorithm usefulness is minimized if such a
secure channel is not available. Moreover, neither DES nor
AES standard tries to address the issue of electronic signatures.
This problems were addressed by W. Diffie and M. E. Hellman
in their influential paper “New Directions in Cryptography”
which was published in 1976. They propose the usage of two
new cryptographic systems: [4]

• public key cryptosystems

• public key distribution systems

Public key cryptosystem was defined as a pair of public
key Ek and private key Dk. Ek is inverse of Dk, but given
the knowledge of Ek it is computationally infeasible to derive
Dk from it. This property allows Ek to be made public while
keeping private key Dk secret. Consequently, when somebody
wants to send a message it can be encrypted using public
key Ek and sent over the insecure channel. Only the party in
possession of Dk is able to decrypt such a message afterwards.
Finding such public key cryptosystem would solve the issue
of secret key distribution. Each communicating party would
generate its own key pair Ek and Dk, making Ek public and
keeping Dk secret. When somebody wants to send a message
it uses the public Ek of intended receiver for encryption. This
way the need for using secure channel is eliminated as Dk is
never communicated anywhere and Ek should not reveal any
useful information for ciphertext decryption. [4]

Finding such cryptosystem would also solve the problem
of electronic signatures. If communicating party would like
to sign the message it can encrypt it using its own private
key Dk. When such a message is received by its addressee
it can try to decrypt it with public key Ek belonging to the
sender. If encryption is successful it means that this message
was encrypted using private key Dk belonging to that public

key Ek. As there should be only one person in possession
of that private key Dk and we know who it is the person is
authenticated. [4]

Diffie and Hellman illustrated possible public key cryp-
tosystems as generating two inverted matrices where one is
used as public key and second as private key. Encryption and
decryption can be done as multiplication of vector (message)
with those matrices. This way the encryption and decryption
would require n2 operations where n is length of vector
(message) and matrix inversion would require approximately
n3 (the more efficient Coppersmith-Winograd algorithm for
matrix inversion was not known in 1976 [8]). This would the-
oretically mean that if you use matrices that are large enough
it would be computationally feasible to perform encryption
and decryption but not the matrix inversion. Nevertheless,
the authors admitted at the time that this example is of no
practical use and usable public key cryptosystem was yet to
be discovered. [4]

Another concept presented in the paper is public key
distribution systems. This concept allows secure exchange of
key over the insecure channel. Diffie and Hellman proposed
key exchange algorithm in their paper that is used until today.
It is based on the difficulty of computing logarithm modulo
q, where q is a prime number. It is simple to compute Y in
the following equations, but difficult to do reverse operation
computing X ouf of Y : [4]

Y = αX mod q

X = logα Y mod q

When two parties want to establish common key K over
insecure channel they first exchange α and prime number q.
Subsequently, they generate Xi and Xj that are less than q
and then exchange Yi = αXi mod q and Yj = αXj mod q
over insecure channel. Common key K is than computed as
follows: [4]

K = Y
Xj

i mod q

K = Y Xi
j mod q

Even if attacker manages to eavesdrop both Yi and Yj it would
be computationally infeasible for him/her to derive K out of
it.

It did not take a long time for usable public key cryptosys-
tem to be discovered. Rivest, Shamir and Adleman presented it
in paper called “A method for obtaining digital signatures and
public-key cryptosystems” roughly two years later in 1978.
Presented public key cryptosystem became widely used and
well-known under the name of RSA. Its security is based on
the complexity of factoring composite number n. Cryptosys-
tem can encrypt messages represented as a number from 0
until n− 1. Encryption of message M and decryption is done
as follows: [9]

C =Me mod n

M = Cd mod n

Therefore (e, n) is public key in RSA cryptosystem and
(d, n) is private key. n is computed as product of two large

random prime numbers p and q. As factoring n to prime
numbers p and q is too computationally complex p and q
are effectively hidden even when n is public. Public exponent
e that needs to be coprime with (p − 1) · (q − 1) is also
picked randomly. Private exponent is multiplicative inverse of
e modulo (p− 1) · (q − 1): [9]

e · d ≡ 1 (mod (p− 1) · (q − 1))

Although RSA was first published public-key cryptosystem
and is possibly the most well-known nowadays there have been
more public-key cryptosystems described over the time like
ElGamal or Elliptic curves based cryptography.

Authors of RSA public key cryptosystems encouraged
cryptanalysts to examine the security of RSA algorithm and
to try to break the cryptosystem. [9] Nevertheless, RSA has
not been broken until today and it is therefore considered to
be secure if reasonably large key length is used. Although
nowadays widely deployed cryptographic algorithms like RSA
and AES are considered strong enough there have been several
prominent attacks and failures of cryptosystems in the past. In
some cases poor implementation of cryptographic algorithms
allowed revealing the key through successful side-channel
attacks which are covered in detail in the following section III.
History has also seen the attempts to create own cryptosystems
and trying to keep the algorithm as well as its implementation
hidden in the devices. GSM cryptosystems like A5/1 and
A5/2 were both reverse engineered from the devices and later
broken, more information is provided in section IV of this
paper.

III. HARDWARE SECURITY

A. Introduction to HW Security

Hardware security of computer devices became a concern
in cases where such a device can get into the possession of
potential attacker. Typical use-case where hardware security
implications need to be taken into account are smart cards.
Plastic cards with a chip are for example used as contactless
payment cards, authorization cards for pay television, phones
SIMs or as a part of biometric passports. Authorization cards
for pay television need to be very hard to clone, otherwise
it is possible to copy the card and sell the counterfeits
illegally so multiple people can watch the program in different
locations with just one subscription paid. Oliver Kömmerlich
and Markus Kuhn argue in their paper “Design principles for
tamper-resistant smartcard processors” that almost every pay
television conditional access system based on smart cards was
successfully reverse engineered and copied between 1994 and
1999. [10] Another example of computer systems that needs
to be extremely hard to tamper with or reverse engineer are
computer chips and electronics in military systems.

Multitude of different hardware security related attacks
were described in the past. They can be generally divided into
the following classes:

• Non-invasive

• Semi-invasive

• Fully-invasive

Non-invasive class represent the attacks that do not tamper
with physical integrity of examined device. It contains all
possible types of side-channel attacks like power analysis
or timing attacks, mostly pioneered by Paul Kocher in late
nineties. [11] [12] Another non-invasive attack is glitching
which is made possible due to the fact that clock and supply
voltage for a smartcard is usually provided by the environment.
Voltage glitch for example reduces the amount of supply
voltage at the specific point which might affect the value that
is read from memory. Clock glitch on the other hand changes
the clock provided to the smartcard in order to change the
execution sequence of a program running on the chip. Other
way how to non-invasively alter the operation of a chip is
to expose it to the non-standard operation environment like
extremely low or high temperatures or x-ray radiation.

Semi-invasive class represent the class of attacks where
computer device (chip) is taken out from the package (plastic
card), but its internal structure and functioning is not per-
manently altered. Internal structure of such a chip can be
consequently examined and reverse engineered for example
using microscope or photonic emission analysis. Moreover,
faults changing the behavior of a chip can be introduced by
microprobing or laser stimulation.

Fully-invasive class contains attack vectors that physically
extract the chip from the casing and then tamper with the
internals of the chip. This could be used in order to circumvent
security checks, for example by connecting the wire that
outputs the success or failure of security check by true (1 –
high voltage) or false (0 – ground) to supply voltage, therefore
being always true. It can be also utilized for changing read-
only memory of the chip and more.

B. Side-channel attacks

The first influential side-channel attack described by Paul
Kocher was published in 1996 in paper “Timing attacks on
implementations of Diffie-Hellman, RSA, DSS, and other
systems”. The fundamental idea exploits the fact that execution
time of cryptosystem implementation differs according to the
key and the input data which can lead to the exposure of secret
key. [12] Let’s assume simple smartcard that is used as an
authentication token of its owner (for instance to authenticate
the person before entering the building). Such a smartcard
needs to fullfil following two criterions:

• identify itself uniquely to the legitimate reader

• being hard to copy

Therefore smartcard that simply sends its ID to the reader
fails to fulfil the second criterion as attacker can read the ID
and easily create counterfeit card sending the same ID. This
problem can be elegantly solved using public key cryptography
explained in section II. Pair of RSA public and private key is
generated for each card. Public key is stored in the reader with
information to which card it belongs. Private key is stored in
the memory of the card. During authentication process reader
first sends some random nonce to the card, card receives it,
signs it with its private key and sends the signed nonce back
to the reader. Reader can now verify that nonce was signed by
the correct private key. This is reliable way of authentication

that does not require private key to be exposed during the
authentication process.

As it was already explained in section II, electronic sig-
nature using RSA is encryption of the message with the
private key. This process needs to calculate S = Md mod n.
Modulus needs to be reasonably large number in order to
ensure that it is not computationally feasible to factor it to its
prime numbers. Modular exponentiation with large modulus
is usually implemented as some form of square-and-multiply
algorithm. Calculation of yx mod n where x is ω bit long
exponent is done as follows: [12]

1: s0 ← 1
2: for k ← 0 upto ω − 1 do
3: if (bit k of x) is 1 then
4: Rk ← (sk · y) mod n
5: else
6: Rk ← sk
7: end if
8: sk+1 ← R2

k mod n
9: end for

10: return Rω−1

If exponent bit is 0 only square operation is taken, while
when exponent bit is 1 both square and multiply operations
are carried out. Paul Kocher identified that if we have enough
timing measurements for multiple messages being signed we
can extract the secret key (exponent). [12] Gaining multiple
timings for different messages is not a problem as we can
send different nonces to the same card and measure how long
it takes to sign the nonce. Given that we have multiple samples
we can easily calculate mean value and variance.

Each timing measurement can be expressed as T = e +∑ω−1
i=0 ti, where: [12]

• ti - multiplication and squaring time in each iteration

• e - time of everything else (loop overhead etc)

• ω - bit-length of x (private key)

The fundamental idea of the attack is that we can guess
first b bits of the exponent x, emulate square and multiply
algorithm for those b bits and measure how long it takes for
each nonce to complete. Meaning that Txb

=
∑b−1
i=0 ti can be

emulated. If we subtract emulated times from the measured
timings we get T − Txb

= e +
∑ω−1
i=b ti. Doing this over all

measurements for correct guess b would decrease the overall
variance from V ar(e) + (ω) · V ar(t) to V ar(e) + (ω − b) ·
V ar(t). On the other hand guessing b bits, but only having first
c bits guessed correctly would increase the overall variance to
V ar(e)+(ω+ b−2c) ·V ar(t). Given the fact that our sample
is large enough to correctly distinguish between correct and
incorrect guess based on the change of overall variance we can
expose the whole secret exponent (private key) bit by bit. [12]

Some other interesting timing attacks were introduced
since Paul Kocher’s initial revelation. Song, Wagner and Tian
presented in 2001 the theoretical approach that can reveal
some information about data transferred over SSH. [13] SSH
in interactive mode sends every keystroke in separate packet.
The fundamental idea is that people tend to type different
key combinations in the different pace which can reveal some
interesting information only by measuring the delays between

individual packets on the network. Another interesting timing
attack was published by Brumley and Boneh in 2005 in paper
“Remote Timing Attacks are Practical”. [14] Until then it was
generally expected that timing attacks can only be utilised
locally. Authors showed that it is possible to employ successful
timing attacks towards OpenSSL over the network.

Apart from timing attacks, other side-channel attacks were
also proved to be useable. Paul Kocher, Joshu Jaffe and
Benjamin Jun presented in their paper “Differential power
analysis” in 1999 method that can compromise the private key
processed on the chip based on the differences of chip power
consumption. [11]

C. Physically unclonable functions

Pursuit of creating chips that can uniquely identify itself
to the reader while not being copiable lead the research
community to evaluate the possibility of utilizing the physical
properties of silicon integrated circuits. The concept named
physically unclonable functions (PUFs) was introduced in
the paper “Silicon Physical Random Functions” in 2002. It
describes that manufacturing process of each integrated circuit
introduces enough deviation of individual physical characteris-
tics of each circuit. Therefore, it should be possible to uniquely
authenticate that circuit based on its physical properties. It
describes PUFs as a function embodied in the physical device
that maps challenges to the responses and has the following
properties: [15]

1) Easy to evaluate — For every challenge the response
is computed in timely manner.

2) Hard to characterize — It is unfeasible to describe
how PUF maps challenges to the responses.

3) Manufacturer resistant — It is unfeasible to manufac-
ture two PUFs that maps responses to the challenges
the same way

4) Controlled — PUF can only be accessed through
interface that was designed for it, meaning that any
attempts to access the PUF in other way (for example
by fully-invasive techniques which would inevitably
change the physical properties of a chip) leads to the
destruction of PUF

When each device with PUF is manufactured certain sam-
ple of challenges is sent to it and responses are recorded.
Consequently, when it is desirable to authenticate the device
some subset of those challenges is sent to the device observing
how it responds. If responses matches to those captured during
the initialization phase the device is authenticated.

Several possibilities how to implement PUF were described
over the time. Arbiter PUF is one of them, it consists of several
boxes connected linearly to each other. Signal is sent through
the boxes as it is shown in the figure 1. Each box takes one
bit of a challenge as its input. If the corresponding bit is 0 the
signal takes straight path if it is 1 then the signal takes switch
path. Response is then 0 or 1 based on which signal arrives
first into the arbiter. [16]

The responses of arbiter PUF and some other PUF con-
structions were proved to be machine learnable in 2010 [17]

Other possible construction of PUF is memory based
SRAM PUF. It utilize the property that each SRAM cell stores

Fig. 1: Arbiter PUF [16]

one bit and its initial content after supplying the voltage is
dependent on small differences during the manufacturing. [16]
Challenge is than describing which SRAM cells are to be read
after the device is turned on and response is the content of
those cells. This type of PUF was also proved to be insecure
as researchers managed to read out all cells without changing
the the PUF properties and subsequently created a copy of it
in 2013. [18]

This should not leave an impression that all possible PUF
solutions are broken and proved unusable. The research in
this field and other PUF solutions is still ongoing and some
companies are already producing PUF based hardware security
solutions. [19]

IV. NETWORK SECURITY

Computer networking started to develop in early sixties
thanks to the research done in packet-switching networks.
ARPANET, built on behalf of U. S. Department of De-
fense, was the first packet-switched network using well-known
TCP/IP protocol family. Consequently, U. S. universities and
other departments of U. S. government either started to connect
to the ARPANET or developed their own networks which
finally lead to the network of interconnected networks, In-
ternet, as we know it today. One of the early services that
helped the inception of Internet was electronic mail defined in
1972. [20] Internet and computer networking in general started
to evolve rapidly, very often leaving security of the information
transmitted over it insecure. Some of the early influential
application layer protocols developed in seventies and eighties
like Telnet, Simple Mail Transfer Protocol (SMTP) or File
Transfer Protocol (FTP) were not taking security into account
at all. [21] Mentioned protocols offer virtually no protection
of confidentiality and integrity of information transmitted.
For example telnet which can be used for remote terminal
connection sends all data in cleartext. Thus, if telnet is used
for remote server administration all sensitive data including
passwords and executed commands are being sent over the
network without any protection. Obviously such information
is easy to intercept by any party having access to one of the
links through which message is transmitted.

As already described in the section II, cryptographic mech-
anisms that could be used for ensuring confidentiality and
integrity of transmitted data were known at least from late
seventies. Therefore, securing information flowing through
computer networks was only matter of applying those cryp-
tosystems in communication protocols. Firstly, it was nec-
essary to find a solution for over-the-network authentication
to remote systems. Initially, this issue was approached by
sending the cleartext password over the network, which is
clearly not an optimal solution for networks where messages

flowing through it can be intercepted. Viable solution of secure
network authentication started to being developed in 1983
in Massachusetts Institute of Technology as part of project
Athena. Aim of the project was to build campus-wide computer
network interconnecting large amount of workstations with
dozens servers. Strong network authentication protocol which
was developed as a part of project Athena and was made public
is known as Kerberos. [22]

Fundamental operation of Kerberos was covered in the
paper “Kerberos: An authentication service for computer net-
works” published in 1994 by two of its co-designers. They
describe Kerberos as a system consisting of principals (user),
verifiers (application server) and authentication server (AS).
The main aim is to securely authenticate principals to verifiers
over the network. Each principal and verifier has his own secret
password that is shared with AS. Whenever principal wishes
to authenticate towards verifier it first sends authentication
request containing principal’s claimed identity, name of verifier
and requested expiration date to AS. AS generates random
session key and sends it back to the principal along with
assigned expiration time, name of verifier and Kerberos ticket
all encrypted using principal’s password. Kerberos ticket is
structure encrypted with verifier’s password containing session
key, name of principal and expiration time. As principal’s
password is known only by himself/herself, he/she is the
only one who can decrypt authentication response from AS
extracting among others Kerberos ticket and session key. It is
worth mentioning that principal is unable to decrypt or change
Kerberos ticket as he does not know verifier’s password.
Principal can now authenticate towards verifier by forwarding
him Kerberos ticket along with authenticator. Authenticator
consist of present time and checksum and is encrypted using
corresponding session key. When verifier receives Kerberos
ticket it decrypts it by its password and extract session key
and principal name. Subsequently, it decrypts authenticator
using that session key and checks the timestamp included in
order to prevent replay attacks. If there are no discrepancies
along the process principal is securely authenticated towards
verifier without revealing any information that would allow
eavesdropper on the channel to claim fake identity. [23]

This approach requires user to provide his/her password
every time he/she receives authentication response in order
to decrypt it. However, Kerberos should provide user-friendly
single sign on (SSO) solution where user is asked to provide
password only once. SSO functionality is introduced by means
of ticket granting server (TGS), which might be hosted by the
same machine as AS. During principal’s initial login into the
system, so called ticket granting ticket (TGT) is issued by AS
and it works as Kerberos ticket for TGS. This way principal
does not need to communicate with AS every time it needs
to authenticate towards new verifier. It authenticates towards
TGS using TGT and TGS subsequently issues Kerberos ticket
for corresponding verifier. [23] Nowadays, Kerberos system
is widely deployed in networks where secure authentication
is essential. For instance, Kerberos is used in all Windows
domain deployments known as Active Directory.

Security issues of existing application-level protocols
started to be addressed as computer networking was getting
more and more widespread in the beginning of nineties. Secure
Shell (SSH) protocol was introduced in 1995 by researcher

from Helsinki University of Technology, Tatu Ylönen. Trigger
for his work was security incident that happened within the
university when user’s passwords were exposed by sniffing
attack. [24] SSH gradually replaced Telnet in all places where
security is of even the smallest concern. Moreover, secure
socket layer (SSL) protocol was developed by Netscape in
1994 in order to help secure vulnerable protocols like HTTP,
FTP, SMTP and others. [25] SSL provides point-to-point
encryption and let aforementioned protocols to run unchanged
on the top of it.

Security protocols ensuring confidentiality and integrity of
data being transferred over insecure channel have been found
vulnerable due to inappropriate architecture multiple times in
the past. For example all SSL protocols of version 3.0 (released
in 1996) and lower are considered to be broken by now and
its use is discouraged. SSL in version 3.0 can be compromised
by POODLE attack which was published in September 2014
by Google security researchers Bodo Möller, Thai Duong and
Krzysztof Kotowicz. Architecture of SSL 3.0 contains flaw
which allows non-deterministic padding that is not covered by
Message Authentication Code (MAC). This allows potential
attacker to decrypt one byte of message by sending on average
256 blocks to the server. On the top of that, man-in-the-middle
attacker can force communication between client and server
to get into fallback mode using old SSL 3.0 instead of newer
versions. [26]

Another influential example of failed network security
solution is that of Wired Equivalent Privacy (WEP). Boom
of mobile devices required individuals and businesses to adopt
technology that would allow wireless connection to Local Area
Networks (LAN). Wireless LAN technology was thus defined
in 1999 and widely adopted. [27] WLAN has one fundamental
difference from wired technologies as it is hard to avoid
wireless signal unlike cables to stay within the premises of the
office or living room. It was therefore essential to accompany
WLAN technology with encryption that would ensure security
of data transferred over the air. Initial standard defines WEP
as recommended encryption technology. WEP is based on
RC4 stream cipher and contains several architectural flaws that
allowed cryptanalysts to break it over the time. [28]

Nowadays, WEP should be considered completely insecure
and was superseded by Wi-Fi Protected Access 2 (WPA2)
encryption standard. It is possible to compromise WEP key
using low-end laptop with aircrack-ng program within few
minutes. [29] It is believed, though no proof for this claim
has been made public, that compromise of WEP-secured
WLAN was crucial step of one of the biggest personal data
breaches in the history. Attackers managed to get access to
the network perimeter of TJX Companies Inc. in July 2005
supposedly thanks to compromise of WEP secured WLAN in
company stores. Attacker’s activities went undetected in the
network until the end of 2006. It is believed that between
50–94 millions payment card details and personal data of
451,000 individuals were compromised over the mentioned
time period. [30] [31]

Nevertheless, outdated and vulnerable network security
solutions does not affect only traditional computer networks.
GSM, Global System for Mobile Communications, extremely
widespread technology standard for mobile phone cellular
networks is known for its weak encryption. GSM was first

used in 1991 in Europe and relies on A5 stream ciphers for
ensuring confidentiality of mobile phone calls since then. [32]
A5 comes in two versions A5/1 cipher is “stronger” and is
used mainly in Europe and A5/2 is intentionally weakened
version that was used outside of Europe. [33] It is worth
mentioning that description of those two ciphers was never
publicly released to allow broad evaluation of cipher strength
by independent security experts. It was only in 1999 that A5
cryptosystem algorithms were reverse engineered from one of
the devices and publicly disclosed. [34]

Cryptanalysts started to challenge security of published ci-
phers soon after the disclosure. I. Goldberg, D. Wagner and L.
Green managed to break A5/2 within 5 hours, describing attack
that needs only O(216) steps. [35] A5/1 proved to be slightly
more secure, but it contains some flaws that contributed to
its final cracking. A5/1 is cryptosystem with key length of 64
bites, however, it turned out after reverse engineering it that
10 least significant bits of the key are deliberately set to 0.
Several possible attacks against A5/1 were published over the
time including A. Biryukov’s, A. Shamir’s and D. Wagner’s
paper “Real Time Cryptanalysis of A5/1 on a PC”. Described
attack require one-time preprocessing stage of complexity 248

and subsequently allows to compromise confidentiality of 2
minutes long captured conversation within 1 second using
computational power of regular PC. Other variant of attack
would require 2 seconds of captured conversation and several
minutes of computation effort. [33]

V. SYSTEM SECURITY

A. Access Control

Every system can be seen as an evolving environment
that reside at particular state at any single point in time. As
the system proceeds its inner states are changing accordingly.
From IT security point of view it is not necessarily interesting
to distinguish among all different states, but only among those
that affect the protection of the system, called protection states.
It is not interesting that value of some process variable changed
from 1000 to 0, nevertheless, this fact gets important when
this variable represents effective user ID of running process
on Linux (process gained root privileges→ protection state of
the system changed). [1]

Access Control Matrix is the abstract construct that can
precisely describe the protection state of the system. It repre-
sents the rights each active entity has over every other entity in
the system. Active entities are referred to as subjects (example
is running process) and all entities are referred to as objects
(those are all passive entities like files and also all subjects
are objects themselves). Access Control Matrix on the system
with amount of subjects |S| and amount of objects |O| is
represented as matrix A with dimension |S| × |O|. Rights that
subject s has over object o are recorded in the matrix cell
A[s, o]. [1] Table I shows an example of access control matrix
of a protection state of a system. It can be clearly seen that
in a given protection system process 1 has rights r, w, o over
file 1 while process 2 has only right r over the same file.
In given example rights correspond to the well-known rights
from UNIX systems (read, write, execute and own), but it is
up to the definition which rights can be used in access control
matrix.

File 1 Process 1 Process 2
Process 1 r, w, o e, o e
Process 2 r e, o

TABLE I: Access Control Matrix example

It is clear that each secure system needs to store the access
control matrix in some form in order to know what rights
subjects have over objects. Moreover, the system needs to
provide access control mechanisms enforcing that subjects can
exercise only those rights over objects that are assigned to
them.

Decisions about how to implement the access control ma-
trix model in the real system brings an interesting implications.
Real world system is expected to accommodate hundreds of
thousands of objects and thousands of objects, so storing the
access control matrix in the memory as two-dimensional array
is clearly not the best design. Moreover, most of the cells of
such an access control matrix would be empty. [1]

I am going to discuss two fundamentally different ap-
proaches of implementation of access control mechanisms:

• Access Control Lists (ACL)

• Capabilities

Access control lists are implemented as a list stored with
every object on the filesystem. This list enumerates all subjects
and captures which rights the given subject has over the object
(in other words access control list is column of access control
matrix of the corresponding object). [1] When subject requests
access to the object, system checks the access control list of a
given object and grants or denies access based on its content.

Most of the common systems like UNIX and Windows
are using the ACL approach of implementing access control
mechanisms. ACL approach was shown to be susceptible to
the “Confused Deputy Problem”. It was presented by Norm
Hardy in 1988 in his paper “The Confused Deputy:(or why
capabilities might have been invented)”. [36] Paper presents
an example of system using ACLs as an access control
mechanism with compiler FORT stored in folder /SYSX. Users
of the system were charged for each use of this compiler.
So everytime the compiler run it wrote billing information
into /SYSX/BILL and some statistics about compilation into
/SYSX/STAT. /SYSX folder was write-protected for ordinary
user, but administrator granted compiler the right to write
into that folder in order to store the billing information and
statistics. When user invoked the compiler he could provide the
path to file where he wanted the compiler to store debugging
information. [36]

This is where the problem starts, if user provides
/SYSX/BILL as a path to the file where to store debugging
information, compiler would rewrite the billing information. It
is important to stress out that the user itself does not have a
right to write into /SYSX/BILL. The problem stems out from
the fact that the compiler acts on behalf of two principals. It
gets the right to write into /SYSX from administrator and is
executed on behalf of ordinary user, thus allowing the ordinary
user to write into the folder through the execution of the
compiler. [36]

This problem can be elegantly solved by the means of
capability based access control mechanisms. Capability based
systems stores information about rights subjects have over
objects within the subject. Every subject holds so called
capabilities, which could be seen as single tokens defining
the object and the right. If given subject wants to access
the object it needs to provide the system with corresponding
capability, otherwise the access is denied. If the system hosting
the compiler uses capabilities, compiler would simply write
into /SYSX/STAT and /SYSX/BILL using the capabilities
granted to it by administrator and subsequently it would use the
capability passed to it by invoker to write the debugging info.
If the invoker is ordinary user he cannot possess the capability
to write into any file in /STAT folder. He is therefore unable
to rewrite any files there as in the case of ACL implementation
and the confused deputy problem is mitigated. [36]

Naturally, access control matrix model requires somebody
to set up which subjects have which rights over objects. There
are several approaches how to tackle this problem generally
falling into one of the following categories: [1] [37]

• Discretionary Access Control (DAC)

• Mandatory Access Control (MAC)

• Role-Based Access Control (RBAC)

Discretionary Access Control leaves it to the discretion
of the users of the system to set up access rights over the
objects. Generally, those systems use the concept of own right.
User who creates the object becomes its owner. Subject with
owner right over the object is subsequently allowed to grant
rights over given object to another subjects of the system. [1]
Example of DAC in practise are access control mechanisms
employed in Linux system. Mandatory Access Control on the
other hand is based on the set of access control rules that are
defined by the administrator of the system and are enforced
by the system, meaning that user cannot change them. [1]
Example of MAC in practise are access control mechanisms
provided by Security-Enhanced Linux (SELinux — Linux
kernel security module).

DAC and MAC approaches were considered sufficient in
the past to fulfil the needs of all possible systems. DAC was
generally considered appropriate for private businesses while
MAC was used in multilevel security environment of gov-
ernment systems processing classified information. The study
researching the access control policy needs of commercial and
federal US entities revealed in 1995 that especially DAC is not
a good fit for commercial sector systems. [38] It found out that
model where users would be assigned rights according to the
roles they represent within the organization would be more
appropriate for some entities researched.

The spontaneous demand for access control based on roles
lead researchers to formally define RBAC in paper “Role-
Based Access Control Models” in 1995. It defines four general
approaches to implement RBAC starting with least complex
solution labeled as RBAC0 until the most complex one labeled
as RBAC3. The fundamental difference is in the concepts
those RBAC models incorporate. The simplest RBAC0 is
defined as access control system that contains set of users,
roles, permissions and sessions. Security administrator defines
roles based on different roles within the organization and

assigns appropriate permissions to those roles based on the
principle of least privilege. Example of such a role is database
administrator or project manager. Users are subsequently as-
signed roles they are performing within a company. Concept
allows users to be assigned multiple roles. Everytime user
is active, some subset of his/her roles are assigned to the
actual session. This allows for a better use of the principle
of least privilege. For example database administrator would
have database administrator role active only during the admin-
istration process. During the time he is working on something
else like replying to emails, researching on the internet he
can use different role with appropriate privileges. [37] Studies
show that changes in assignment of rights to the roles are much
more rare than changes in assignments of users to the roles,
which allows for streamlined administration process of RBAC
compared to DAC. [37] [38]

RBAC1 model was defined as model containing the whole
concept of RBAC0 and adding the hierarchy of roles allowing
one role to inherit permissions from another role. For example
project manager can inherit all permissions from project mem-
ber role and add other permissions that are not available to the
ordinary project member role. RBAC2 model contains again
the whole concept of RBAC0, but in comparison to RBAC1

adds constraints on user-to-role and role-to-permission assign-
ments. It incorporates constraints like that one user cannot
have two roles from mutually exclusive set assigned to him.
This allows to stick to the principle of separation of privileges.
Example would be the case when two people need to cooperate
in order to issue and pay the bill. One person can only issue
bill or pay the bill, but not both which reduced the likelihood
of single person committing fraud. Most sophisticated RBAC
model presented in the paper labeled as RBAC4 combines all
of the above concepts together. [37]

Administration of RBAC in more complex environments
can be also done on the principle of RBAC. There might
be a role that is allowed to create and delete users as they
are joining and leaving the organization. Other role might be
in charge of assigning proper roles to the users as they are
changing their roles in the organization and third role might
define the mapping of permissions to the roles according to
the organization needs. [37]

B. Trusted Computing

As already described in the section I, security policies de-
fine what is and what is not allowed in the system. Those poli-
cies need to be properly enforced by the security mechanisms.
For instance access control explained in the previous section
needs to have trustworthy mechanisms that are enforcing it in
order to ensure the security of the system. U. S. Department
of Defense standard “Trusted Computer System Evaluation
Criteria” from 1985 (also known as Orange Book) defined
the term “Trusted computing base” (further referred as TCB)
as following: “Trusted Computing Base includes hardware,
firmware, and software critical to protection and must be
designed and implemented such that system elements excluded
from it need not be trusted to maintain protection.” [39]

This in the other words means that if any security mech-
anism which is part of TCB gets compromised the security
of the whole system is breached. [1] TCB in general Linux

consists of hardware, Linux kernel, system binaries and con-
figuration files and if any of those parts contain the flaw
(for example some application security vulnerabilities that are
covered in detail in section VI-A) the system can get into
disallowed (nonsecure) state. It was already known in 1985
that the bigger the TCB is the more likely it gets that it
contains some flaw through which system security can be
compromised. [39]

There are two fundamental approaches in the operating
system kernel design which affect the subsequent size of TCB.
Kernel can be either designed as monolithic kernel or µ-kernel
(microkernel). Monolithic kernel is large piece of software
that includes services for IPC, thread management, memory
allocation, device drivers, file systems and other functionalities.
Example of monolithic kernel based systems are UNIX or
Linux. According to article “Who’s Writing Linux?” in IEEE
spectrum full Linux kernel in version 3.10 (released on 30th
June 2013 [40]) approached 17 millions lines of code. [41]
In general not all codebase would be used, but it gives a
good picture about the size of well-known monolithic kernel
and how unlikely it is to get reasonable assurance that those
millions lines of codes are bug-free. On the other hand the
basic concept behind µ-kernel is that the functionality can be
implemented inside the kernel space only if implementing it
outside of the kernel space is impossible. [42]

Although the advantages of µ-kernels and effects making
the TCB smaller has on increased system security (due to
the easier assurance process) were known at least from 1985
[39], µ-kernels were generally not used and accepted at least
until mid-nineties. Jochen Liedtke published several µ-kernel
related papers during those times including the one named
“On µ-kernel Construction” in 1995. [42] At the time being
it was generally perceived that the inefficiency is inherent
to µ-kernels due to frequent switching between kernel and
user space. Liedtke presented arguments that this perception
is based on wrong assumptions and implementation and pre-
sented a well-performing µ-kernel design.

Concepts described by Liedtke were implemented in 1993
in µ-kernel named L3. [43] This theoretical and practical work
restored the interest in µ-kernels with other µ-kernels like L4,
Fiasco or Pistachio being released throughout nineties and after
the turn of the millenium. [44] Another important milestone in
the history of system security was formal verification of seL4
µ-kernel. Implementation of seL4 µ-kernel is the first one that
was formally proved to be correct, giving the highest possible
assurance in its correct functionality. It was achieved in 2009
at NICTA, ICT research center in Australia. [45]

The evolution explained above brought us a trustworthy
system kernel, but system and its TCB consists of more
than just a kernel. On the top of that widespread commodity
systems are nowadays still based on monolithic kernels and
nothing seems to indicate that it would change in a near
future. Moreover, they tend to offer poor application isolation
meaning that compromise of one process can often lead to the
compromise of other processes and the whole system. This
shortcomings prevent hosting multiple services with different
security demands on a single system. [46]

Researches at Stanford university tried to tackle those
issues by presenting their platform called Terra in 2003. [46]

Goal of Terra was not to come up with single high-assurance
system, but to allow multiple systems with varying security
requirements to coexist on a single machine. It is based on the
concept of Trusted Virtual Machine Monitor (TVMM) which
allows multiple isolated virtual machines to run on a single
tamper-resistant, general-purpose hardware. Therefore it would
be up to the designer to group applications with the same secu-
rity requirements to the same virtual machines. Depending on
the security requirements those virtual machines might contain
everything ranging from minimalistic OS containing only little
more than bootstrapping code and one very high assurance
application running on the top of it to the OS like Linux with
mail client, web browser and other applications. [46]

In general µ-kernels provides interesting possibility for
the secure paravirtualization. They offer small codebase that
allows for superior scrutiny during the assurance process,
allowing for high-assurance in separation of virtual machines
running on the top of it (seL4 µ-kernel was even formally
verified [45]). On the other hand paravirtualization brings the
necessity of modifying the existing systems to run on µ-kernel
API rather than on HW directly. L4Linux project of porting
Linux kernel to run on top of L4 compatible µ-kernel like
Fiasco released its first port in 2004. Project is still active
and as of February 2015 the last version of Linux kernel
modified to run on the top of L4 API is 3.16. [47] Paper
describing Terra was released in 2003 and opted for use of
virtualization instead of paravirtualization in order to achieve
compatibility with existing systems at the time. To support the
choice authors argue that TVMM is a simple program that can
be implemented within tens of thousands lines of code and as
a such can achieve reasonable high-assurance of flawlessness
the same way as µ-kernels. [46]

Terra also defines the concept of closed-box VM meaning
that TVMM protects the content of the VM from disclosure or
from unallowed tampering from the outside. Terra adds three
additional features to the regular concept of VM isolation.
First of all, it is root secure meaning that nobody, not even
platform administrator, is able to break confidentiality and
integrity of closed-box VMs. Secondly, it defines attestation
as a possibility for closed-box VM to cryptographically assure
the user that its content is what is expected. Lastly, it provides
trusted path between user and VM, meaning that authenticity
of user and VM is verified and the confidentiality and integrity
of communication is ensured. [46]

VI. APPLICATION SECURITY

Application security covers all security aspects of programs
running on top of the operating system. There is an overwhelm-
ing amount of programs in the wild providing vastly different
levels of technical quality of code as well as different levels
of trustworthiness of their creators. Subsequent sections will
cover both of those aspects separately.

A. Technical Aspects of Application Security

Programs are being developed by human beings and as
a such it is inevitable that some security vulnerabilities are
inadvertently introduced throughout the process. There exist
multiple types of technical security flaws that can be found in
desktop or web-based applications including buffer overflow,

SQL injection, cross-site scripting or flaws in the logic of
the application. This section focuses on the history of buffer
overflows and protective countermeasures.

Buffer overflow vulnerability is present in a case program-
mer fails to validate the provided input data. Most prominent
example would be a C program that reads user’s input and
stores it into a pre-allocated array of characters without check-
ing whether input fits into the allocated space. If the length of
provided input is longer than array that was allocated for it,
program simply rewrites the memory that is right after the
array. If properly exploited it would allow attacker to inject
arbitrary machine instructions within program’s address space
and subsequently affect the value of program counter in a
way that injected machine code gets executed. Thus, allowing
attacker to take over the control of a program with all privileges
it possesses.

One of the first examples of successful large-scale exploita-
tion of buffer overflow vulnerability was release of so-called
“Morris worm” on 2nd November 1988. It targetted VAX and
SunOS machines connected to the Internet at the time. One of
the spreading mechanisms was exploitation of buffer overflow
vulnerability in finger service that allowed the worm to execute
arbitrary code on the target machine. Worm was not causing
any intentional harm to the attacked computers, but contained
a flaw that allowed multiple infections of the same machine
which finally lead to the denial-of-service conditions. [48]
Creator of a worm, Robert Morris, Jr., a graduate student at
Cornell, was convinced and sentenced to a fine of $10,050, 400
hours of community service and three years of probation. [49]

Executing arbitrary code through stack-based buffer over-
flow was comprehensively described by Aleph One in 49th
issue of Phrack magazine (published in 1996) in article
“Smashing The Stack For Fun And Profit”. [50] Interest and
research in buffer overflow vulnerabilities gradually increased
and it yielded 9687 CVE overflow vulnerabilities that were
registered since 1999. [51] Those facts lead the developers of
affected compilers and operating systems to introduce some
countermeasures that would not need to rely on program
developers producing secure code. Protective countermeasures
include marking stack and heap address space as not exe-
cutable, which would prevent attackers from executing injected
code. Other countermeasures include address space layout
randomization which maps heap, stack and linked libraries
to unpredictable random memory addresses within process
address space which makes it harder for the attacker to pick
correct address for a jump.

Being unable to inject code that can be subsequently
executed lead security researches to investigate if existing
executable code that is mapped into process address space can
be exploited. First successful exploit was described in 1997
by Solar Designer and was named return-into-libc overflow
exploit. It exploits the fact that nearly all C binaries have C
standard library linked into its address space and that overflow
vulnerability would allow to jump to the arbitrary address. So-
lar Designer provided proof of concept of exploit that can call
arbitrary function from libc (or any other library that is linked
into the address space). Standard C library contains function
system which allows to execute arbitrary shell command.
Therefore, attacker can take over the control of process without

injecting machine code into it, which render non-executable
protection of much less use than it was perceived. [52]

Nevertheless, employing this approach gives an attacker
more limited possibilities compared to the standard code injec-
tion. Standard code injection allows use of arbitrary machine
code, while return-to-libc attack needs to stick to the functions
that are linked into address space of a process. Moreover,
return-to-libc attack does not allow any conditional branching,
so attacker needs to stick to sequential execution of those
functions. [53] This issue was approached by Hovan Shacham
in his paper “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86)” which
was published later in 2007. It introduces an approach that
allows attacker to construct arbitrary machine code out of the
code that is present in process address space. [53]

Main idea behind this technique is to use small code
snippets that execute some actions and end with ret instruc-
tion (opcode c3). As author demonstrated, attackers does not
need to depend solely on instructions intentionally used in the
process. x86 instruction does not have a fixed length, meaning
that if attacker sets the jump to the address that is not meant to
be a beginning of some instruction, it is still very likely that
the subsequent code will be interpreted as valid instructions
by processor. Let’s assume that our linked library contains
following code snippet:

0: 48 83 ec 08 sub $0x8,%rsp
4: 48 83 c4 08 add $0x8,%rsp
8: c3 ret

If we jump to the address 0x0 code is executed as it is,
however, if we jump to the address 0x1 instead, processor
executes the following:

1: 83 ec 08 sub $0x8,%esp
4: 48 83 c4 08 add $0x8,%rsp
8: c3 ret

Author developed program that analyses the instructions con-
tained in a library for all possible code snippets that can be
used and explained how those snippets can be tied together in
order to make process execute exactly what attacker wants it
to execute, thus achieving similar outcome as in the case of
injecting shellcode directly. [53]

B. Trust-based Aspects of Application Security

Previous section dealt with the resilience of applications
against attacks that would make them behave in disallowed
manner. However, there is also another aspect of application
security that deals with trustworthiness of a given application.
Due to the overwhelming size of software average company
or individual need to use, it is out of the question to create all
software in-house. As we need to rely on applications created
by somebody else we also need to trust such applications that
it does what it claims to and nothing else. Software that is
performing some unwanted hidden operations or contain some
hidden features that might do harm to a user are called trojan
horses or backdoors. Trustworthiness of software we are using
in our daily life have became very delicate problem mostly
because of its huge amount and complexity that effectively

reduces the possibility to scrutinize properly every application
before using it. Moreover, attempts of cybercriminals to take
control of our computers and data in order to gain financial or
other benefits and government agencies infamously spying on
its own citizens further increase the complexity of what can
and cannot be trusted.

Well-known example of sophisticated backdoor that can
be introduced in a compiler was first outlined by Karger and
Schell in their evaluation of security of Multics in 1974. [54]
Attack was later implemented and presented by Ken Thompson
in his Turing award lecture in 1984. The main idea behind the
attack is to insert the trojan horse into the compiler that would
affect the functionality of chosen programs after compilation,
but it would be undetectable in compiler nor program source
codes. It exploits the fact that C compiler itself is written in
C. Therefore, if you want to add new functionalities into C
compiler you need to “train” it how to compile those new
features. Example given in Thompson paper shows how to
include new escape sequence into the C compiler. If you want
to add new escape sequence \v with ASCII value of 11 you
first need to hardcode the value 11 into the new version of
compiler and recompile it with the old one. Then value 11 can
be replaced in the compiler source code by escape sequence
\v and distributed. This way compiler knows that anytime
it encounters escape sequence \v it should be translated to
ASCII value 11 without any place in source code specifically
mentioning value 11. [55]

This feature can be misused to “train” compiler to insert
trojan horse into machine code of any program. Author imple-
mented it a way that any time login program was compiled it
included backdoor, so that login would accept valid password
or predefined string. Therefore, allowing successful intruder to
login as arbitrary user. Same pattern was included for compi-
lation of compiler sources itself, so backdoor went undetected
in source code of login program and compiler. Even though
example of C compiler backdoor is already very complex to
detect it is also possible to plant backdoor in lower levels
(for example hardware microcode), which would be near to
impossible to detect. All those facts emphasize the importance
of trust we need to place in developers and distributors of
applications and hardware. [55]

History saw several successful and unsuccessful attempts
to introduce backdoors into widely used software solutions.
Example of failed attempt happened in 2003 when unknown
intruder tried to smuggle backdoor into Linux kernel. Linux
kernel developers were using BitKeeper for revision control
back then and all changes were being cloned into CVS
repositories. Larry McVoy noticed on 5th November 2003
that there is a change in CVS that was done directly (it was
not mirrored from BitKeeper). Most likely cause was that
somebody broke into CVS server and tried to insert backdoor
allowing for local privilege escalation. Following two lines of
code were added: [56]

if ((options == (__WCLONE|__WALL)) &&
(current->uid = 0))

retval = -EINVAL;

Second part of the condition contains assignment (=)
instead of equality test (==), which means that whoever

executes the system call with flags fulfilling the first half of
the condition will be granted root privileges (user id 0). This
attempt was considered as failed mainly because change only
got into CVS mirror and was detected, so it could only affect
people who pulled and used development version from CVS
mirror. [56]

Another infamous example was a rootkit included on the
audio CDs of Sony BMG in 2005. Rootkit existence was
first revealed by Mark Russinovich in the blogpost “Sony,
Rootkits and Digital Rights Management Gone Too Far” on
31st October 2005. It revealed that software that is part of
audio CD and needs to be installed before one can listen to
the music contains rootkit. Rootkit changed system calls the
way it did not reveal existence of any files, folders, registry
key or process which name starts with sys. Rootkit was
active even when user was not listening to the music, it was
very complicated to uninstall and this fact was withheld from
EULA. [57] It was not until the huge wave of public discontent
with those revelation spreaded around the world that Sony
BMG started to act. Firstly, it temporarily halted production
of its DRM scheme on 11th November and three days later it
recalled infected CDs from retail stores and customers offering
free replacement. [58]

Exploiting the trust of users is not only achieved by appli-
cations that are performing some covert operations unknown to
the user, but also by tricking the user into taking some actions
wanted by attacker or revealing his/her sensitive information
including passwords, payment card details and others. This
attack is known as phishing and in its most common form
attacker attempts to trick victim by sending fake emails with
spoofed address of origin. Message usually contains malware
or asks victim to provide his/her personal information for
some credibly-looking reason. If user follows the hyperlink
provided in the message (very likely perfect copy of legitimate
website) and enter his/her sensitive information it is captured
and misused by attacker.

Phishing is younger technique how to exploit trust of
the users compared to the distribution of rigged software.
Invention of this technique dates back to mid-nineties and is
connected to America Online (AOL) service. Attackers started
to send out messages asking AOL subscribers to verify their
accounts and confirm billing information in order to steal their
account information. Later on, attackers turned their interest in
more profitable ventures like stealing PayPal or payment card
information. Thanks to the combination of uneducated users,
improving phishing techniques and likely instant financial
gains, phishing attacks were getting more and more common
after the turn of the millenium. [59]

First survey examining which factors influence the success
rates of phishing campaigns and why are users still fooled
by attack with well-known pattern was conducted in 2006 by
Rachna Djamila, J.D.Tygar and Marti Hearst. They asked 22
participants to evaluate 20 websites and to decide if those
sites are legitimate or fake and commented the results in
paper called “Why phishing works”. [60] Authors discussed
the influence that gender, education or previous computer skills
might have on likelihood that individual correctly identifies
counterfeit website. I personally believe that amount of par-
ticipants and websites examined was too small to draw any
valid statistical conclusions of such an influence. Nevertheless,

it was the first attempt to investigate reasons why phishing
really works and it brought other interesting insights, especially
about the inefficiency of countermeasures implemented in the
browsers.

Among other facts it revealed that well-designed phishing
site was able to fool 90 percent of participants. When it comes
to the countermeasures that are supposed to inform users about
possibility of counterfeit website it turned out that 15 out of
22 participants ignored warning about invalidity of website
certificate. Moreover, almost quarter of them did not pay any
attention at all on address bar, status bar and other security
indicators that were present. Authors also noted that real-world
results might be even worse than this because participants
were encouraged to recognize phishing sites so they were more
attentive. [60]

Therefore, it should not be too surprising that phishing
attacks are still viable way of hacking into computer systems
or stealing sensitive information. Some of the recent large-
scale IT security incidents happened thanks to the ability of
attackers to get initial access into the defense perimeter through
phishing. One of such an examples is breach in Target Corp.,
US retail company from December 2013. Attackers managed
to get in through phishing campaign affecting one of Target’s
contractors and they consequently compromised credit card
and personal information of more than 110 million customers
of Target company. [61]

VII. PRESENT AND FUTURE OF INFORMATION SECURITY

Information technology is nowadays rapidly evolving and
very innovative field of human knowledge. Technology and
trends that were state-of-the-art yesterday are being replaced
as obsolete today. Such progressively evolving environment is
bringing great challenges in the field of information security.
As already described in section IV there were examples in the
past when rapid development of new information technologies
left its security aspects improperly addressed. In my opinion,
there are several new trends on the rise nowadays that require
proper adjustments of security policies and mechanisms in
order to ensure their viability and wide-adoption in short-term
horizon among companies and individuals.

First and foremost, cloud computing technology draw a
lot of attention since its inception in early 2000s as possible
replacement for dedicated servers and mainframes. Cloud
computing as a such has fundamental advantages that make it
appealing. Its elasticity allows companies to dynamically pay
cloud-computing providers exactly for resources they utilize
without the need to acquire expensive hardware and human
capital to operate it. [62] On the other hand, security challenges
related with the fact that company stores their sensitive data
in the public cloud outside of their control is one of the issues
that needs to be addressed. Internet knows no borders, so
using cloud services means storing your data in data center,
that is very likely in the different country in completely
different jurisdiction. Researches S. Subashini and V. Kavitha
conducted a survey examining security issues of different cloud
computing service delivery models and published its results in
2010. [63]

There are three different service delivery models for cloud
computing: Software as a Service (SaaS), Platform as a Service

(PaaS) and Infrastructure as a Service (IaaS). They differ in
amount of abstraction client is offered by them. When SaaS is
used provider maintains all the infrastructure from hardware,
through networking and operating system up to the application
level and client is presented with application that can be used
for example through web browser. When utilizing this model,
all security measures has to be taken by provider, so client has
only extremely limited insight into the underlying infrastruc-
ture. On the contrary, IaaS model provides client with virtual
server where client is able to control everything from operating
system up. Thus, security aspects from system level upwards
are in the hands of a client. PaaS is somewhere in between IaaS
and SaaS, providing clients with control over the applications
running in the cloud, but not operating system. Delivery model
used thus determines how much control clients have over their
data. Nevertheless, utilizing any aforementioned model still
means that clients are required to voluntarily give up part of
control over their own data to the cloud provider. [63] This
clearly requires great deal of trust that provider puts in place
appropriate measures to protect client’s data and that those data
are not deliberately accessed by some third party.

Such a trust is uneasy to obtain in connection with recent
leaks of information about National Security Agancy (NSA)
and other intelligence agencies surveillance programs. One of
the leaked documents dated to April 2013 revealed existence of
NSA program — PRISM. It described that NSA can directly
access customer’s data including emails, photos and other files
that are stored in servers of major US cloud-service providers.
Companies involved are among others Google, Microsoft,
Facebook and Apple. [64]

There have been also incidents of cloud-solution provider
failing to properly protect customer’s data. Code Spaces, com-
pany providing project management tools and code repositories
like SVN and Git was subject to the destructive cyber attack
in June 2014. Service was build on the top of Amazon Web
Services (AWS) IaaS solution and provided its services to
customers as SaaS. Before the attack Code Spaces publicly
displayed phrases like “Code Spaces has a full recovery plan
that has been proven to work and is, in fact, practiced.” on
their website. Yet, attackers managed to get into their AWS
account and asked for a ransom. When attackers found out
that company was trying to regain full control over their AWS
account they deleted all content hosted there. As Code Spaces
failed to keep backup anywhere else it effectively lost all data
of their customers and was forced to quit the business. [65]

Another noticeable trend in information technology is
known as “Internet of Things”. It represent the increasing
numbers and varieties of devices that are being connected
to the Internet. Everything ranging from your watch, refrig-
erator or home heating system through medical equipment
to industrial installation can be connected to the Internet in
order to increase its functionality. Such a development will
obviously have profound security implications. While it is
indeed bad when personal data of whole lot of people are
compromised during a cyber attack, it is completely different
story when attackers manage to affect physical operation of
electrical grid, your heating system or medical equipment.
Utilizing advantages of modern technologies in this field would
require us to come up with security solutions that can scale
well and provide appropriate levels of protection.

After all, every single aspect of our life and society is
getting more and more dependent on modern technology. If
we fail to properly secure digital devices that are now making
our life simpler they might as well make our life much tougher
in the future.

REFERENCES

[1] M. Bishop, Computer Security: Art and Science. Addison-Wesley,
2003.

[2] ——, “What is computer security?” Security & Privacy, IEEE, vol. 1,
no. 1, pp. 67–69, 2003.

[3] F. W. Winterbotham, The ultra secret. Wiley-Blackwell, 1975.
[4] W. Diffie and M. E. Hellman, “New directions in cryptography,”

Information Theory, IEEE Transactions on, vol. 22, no. 6, pp. 644–
654, 1976.

[5] “Archived fips publications,” http://csrc.nist.gov/publications/
PubsFIPSArch.html, accessed: 10.2.2015.

[6] FIPS PUB, “46, data encryption standard (des), national institute of
standards and technology, us department of commerce (october 1999),”
Link in: http://http://csrc.nist.gov/publications/fips/archive/fips46-
3/fips46-3.pdf.

[7] ——, “197, advanced encryption standard (aes), national institute
of standards and technology, us department of commerce (novem-
ber 2001),” Link in: http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf.

[8] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic
progressions,” in Proceedings of the nineteenth annual ACM symposium
on Theory of computing. ACM, 1987, pp. 1–6.

[9] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of
the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[10] O. Kömmerling and M. G. Kuhn, “Design principles for tamper-
resistant smartcard processors,” in USENIX workshop on Smartcard
Technology, vol. 12, 1999, pp. 9–20.

[11] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology—CRYPTO’99. Springer, 1999, pp. 388–397.

[12] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems,” in Advances in Cryptology—CRYPTO’96.
Springer, 1996, pp. 104–113.

[13] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on ssh.” in USENIX Security Symposium, vol. 2001,
2001.

[14] D. Brumley and D. Boneh, “Remote timing attacks are practical,”
Computer Networks, vol. 48, no. 5, pp. 701–716, 2005.

[15] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proceedings of the 9th ACM conference on
Computer and communications security. ACM, 2002, pp. 148–160.

[16] R. Maes and I. Verbauwhede, “Physically unclonable functions: A study
on the state of the art and future research directions,” in Towards
Hardware-Intrinsic Security. Springer, 2010, pp. 3–37.

[17] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhu-
ber, “Modeling attacks on physical unclonable functions,” in Proceed-
ings of the 17th ACM conference on Computer and communications
security. ACM, 2010, pp. 237–249.

[18] C. Helfmeier, C. Boit, D. Nedospasov, and J.-P. Seifert, “Cloning
physically unclonable functions,” in Hardware-Oriented Security and
Trust (HOST), 2013 IEEE International Symposium on. IEEE, 2013,
pp. 1–6.

[19] “Verayo – simply secure,” http://verayo.com/, accessed: 11.2.2015.
[20] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C.

Lynch, J. Postel, L. G. Roberts, and S. Wolff, “A brief history of the
internet,” ACM SIGCOMM Computer Communication Review, vol. 39,
no. 5, pp. 22–31, 2009.

[21] “Rfc index,” https://tools.ietf.org/rfc/index, accessed: 20.2.2015.
[22] G. A. Champine, D. E. Geer, and W. N. Ruh, “Project athena as a

distributed computer system,” Computer, vol. 23, no. 9, pp. 40–51,
1990.

[23] B. C. Neuman and T. Ts’o, “Kerberos: An authentication service for
computer networks,” Communications Magazine, IEEE, vol. 32, no. 9,
pp. 33–38, 1994.

[24] D. J. Barrett and R. E. Silverman, SSH, the Secure Shell: the definitive
guide. ”O’Reilly Media, Inc.”, 2001.

[25] IBM, “The secure sockets layer and transport layer security,”
http://www.ibm.com/developerworks/library/ws-ssl-security/#toggle,
accessed: 28.3.2015.

[26] B. Möller, T. Duong, and K. Kotowicz, “This poodle bites: Exploiting
the ssl 3.0 fallback,” 2014.

[27] “15 years of wi-fi,” http://www.wi-fi.org/discover-wi-fi/
15-years-of-wi-fi, accessed: 29.3.2015.

[28] A. Stubblefield, J. Ioannidis, and A. D. Rubin, “A key recovery
attack on the 802.11 b wired equivalent privacy protocol (wep),” ACM
transactions on information and system security (TISSEC), vol. 7, no. 2,
pp. 319–332, 2004.

[29] “Aircrack-ng,” http://www.aircrack-ng.org/, accessed: 29.3.2015.

[30] J. Vijayan, “Tjx data breach: At 45.6m card numbers, it’s the biggest
ever,” http://www.computerworld.com/article/2544306/security0/
tjx-data-breach--at-45-6m-card-numbers--it-s-the-biggest-ever.html,
accessed: 29.3.2015.

[31] E. Chickowski, “Tjx: Anatomy of a massive breach,” http://www.
baselinemag.com/c/a/Security/TJX-Anatomy-of-a-Massive-Breach, ac-
cessed: 29.3.2015.

[32] GSMA, “Brief history of gsm & the gsma,” http://www.gsma.com/
aboutus/history, accessed: 29.3.2015.

[33] A. Biryukov, A. Shamir, and D. Wagner, “Real time cryptanalysis of
a5/1 on a pc,” in Fast Software Encryption. Springer, 2001, pp. 1–18.

[34] L. Green, I. Goldberg, and D. Wagner, “A pedagogical implementation
of a5/1,” http://www.scard.org/gsm/a51.html, accessed: 29.3.2015.

[35] I. Goldberg, D. Wagner, and L. Green, “The real-time cryptanalysis of
a5/2,” Rump session of Crypto, vol. 99, pp. 239–255, 1999.

[36] N. Hardy, “The confused deputy:(or why capabilities might have been
invented),” ACM SIGOPS Operating Systems Review, vol. 22, no. 4, pp.
36–38, 1988.

[37] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” Computer, vol. 29, no. 2, pp. 38–47,
1996.

[38] M. D. M. Gilbert, “An examination of federal and commercial access
control policy needs,” in National Computer Security Conference,
1993 (16th) Proceedings: Information Systems Security: User Choices.
DIANE Publishing, 1995, p. 107.

[39] U.S. Department of Defense, “Trusted computer system evaluation
criteria,” DOD 5200.28-STD, 1985.

[40] “Active kernel releases,” https://www.kernel.org/category/releases.html,
accessed: 19.2.2015.

[41] “Who’s writing linux?” http://spectrum.ieee.org/computing/software/
whos-writing-linux, accessed: 19.2.2015.

[42] J. Liedtke, On micro-kernel construction. ACM, 1995, vol. 29, no. 5.

[43] ——, “Improving ipc by kernel design,” in ACM SIGOPS Operating
Systems Review, vol. 27, no. 5. ACM, 1994, pp. 175–188.

[44] “The l4 µ-kernel family,” http://os.inf.tu-dresden.de/L4/, accessed:
20.2.2015.

[45] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish et al., “sel4:
Formal verification of an os kernel,” in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles. ACM, 2009, pp.
207–220.

[46] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A
virtual machine-based platform for trusted computing,” in ACM SIGOPS
Operating Systems Review, vol. 37, no. 5. ACM, 2003, pp. 193–206.

[47] “Welcome to l4linux!” http://os.inf.tu-dresden.de/L4/LinuxOnL4/, ac-
cessed: 20.2.2015.

[48] M. W. Eichin and J. A. Rochlis, “With microscope and tweezers:
An analysis of the internet virus of november 1988,” in Security and
Privacy, 1989. Proceedings., 1989 IEEE Symposium on. IEEE, 1989,
pp. 326–343.

[49] “The robert morris internet worm,” http://groups.csail.mit.edu/mac/
classes/6.805/articles/morris-worm.html, accessed: 26.3.2015.

[50] A. One, “Smashing the stack for fun and profit,” http://phrack.com/
issues/49/14.html#article, accessed: 26.3.2015.

[51] “Cve details,” http://www.cvedetails.com/vulnerabilities-by-types.php,
accessed: 26.3.2015.

[52] S. Designer, “Getting around non-executable stack (and fix),” http://
seclists.org/bugtraq/1997/Aug/63, accessed: 26.3.2015.

[53] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security. ACM,
2007, pp. 552–561.

[54] P. A. Karger and R. R. Schell, “Multics security evaluation: Vulnera-
bility analysis,” in Computer Security Applications Conference, 2002.
Proceedings. 18th Annual. IEEE, 2002, pp. 127–146.

[55] K. Thompson, “Reflections on trusting trust,” Communications of the
ACM, vol. 27, no. 8, pp. 761–763, 1984.

[56] L. McVoy, “Lkml: Bk2cvs problem,” https://lkml.org/lkml/2003/11/5/
121, accessed: 27.3.2015.

[57] M. Russinovich, “Sony, rootkits and digital rights management gone
too far,” http://blogs.technet.com/b/markrussinovich/archive/2005/10/
31/sony-rootkits-and-digital-rights-management-gone-too-far.aspx, ac-
cessed: 27.3.2015.

[58] B. Schneier, “Sony’s drm rootkit: The real story,” https:
//www.schneier.com/blog/archives/2005/11/sonys drm rootk.html,
accessed: 27.3.2015.

[59] “History of phishing,” http://www.phishing.org/history-of-phishing/, ac-
cessed: 27.3.2015.

[60] R. Dhamija, J. D. Tygar, and M. Hearst, “Why phishing works,” in
Proceedings of the SIGCHI conference on Human Factors in computing
systems. ACM, 2006, pp. 581–590.

[61] B. Krebs, “Email attack on vendor set up
breach at target,” http://krebsonsecurity.com/2014/02/
email-attack-on-vendor-set-up-breach-at-target/#more-24313,
accessed: 27.3.2015.

[62] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[63] S. Subashini and V. Kavitha, “A survey on security issues in service
delivery models of cloud computing,” Journal of network and computer
applications, vol. 34, no. 1, pp. 1–11, 2011.

[64] “Nsa prism program slides,” http://www.theguardian.com/world/
interactive/2013/nov/01/prism-slides-nsa-document, accessed:
30.3.2015.

[65] “Aws console breach leads to demise of service with
“proven” backup plan,” http://arstechnica.com/security/2014/06/
aws-console-breach-leads-to-demise-of-service-with-proven-backup-plan/,
accessed: 30.3.2015.

